NEWINGTON COLLEGE

TRIAL HIGHER SCHOOL CERTIFICATE EXAMINATION 2003

12 MATHEMATICS

Time allowed - 3 hours

(plus 5 minutes reading time)

DIRECTIONS TO CANDIDATES:

- All questions are of equal value.
- All questions may be attempted.
- In every question, show all necessary working.
- Marks may not be awarded for careless or badly arranged work.
- Approved silent calculators may be used.
- A table of standard integrals is provided for your convenience.
- The answers to the ten questions in this paper are to be returned in separate bundles clearly marked Question 1, Question 2 etc. Start each question in a new booklet.
- Each booklet must show the candidate's computer number.
- The questions are not necessarily arranged in order of difficulty. Candidates are advised to read the whole paper carefully at the start of the examination.
- Unless otherwise stated candidates should leave their answers in simplest exact form.

Question 1 (12 Marks)

Marks

- a) Express 135^0 in radians in terms of π .
- b) Factorise $2x^2 18$.
- c) Solve for x: |x-3| < 4.
- d) Find the exact value of $\cos \frac{7\pi}{6}$.
- e) Find the value of e^{π} , correct to 3 significant figures.
- f) Find integers a and b such that $(2 \sqrt{3})^2 = a + b\sqrt{3}$.
- g) Simplify $\log_3\left(\frac{1}{9}\right)$.

Question 2 (12 marks)

Start this question in a new booklet.

a)

- i) Find the gradient of AB.
- ii) If BA is extended to the x axis find θ to the nearest degree.
- iii) Show that AB has equation x 2y + 7 = 0.
- iv) Show that the perpendicular distance from C to AB is $\frac{11}{\sqrt{5}}$ units.
- v) If ABCD is a parallelogram find the area of ABCD.
- vi) If ABCD is a parallelogram find the coordinates of D.

b) Find θ to the nearest minute.

2

Question 3 (12 marks)

Start this question in a new booklet.

Marks

a) Differentiate

5

- i) $\tan 3x$
- ii) $\frac{x}{e^{2x}}$
- iii) $\log_e(\sin 3x)$
- b) Find

4

- i) $\int \cos 3x dx$
- $ii) \qquad \int \frac{x^3 + 2x^2 3}{x^2} dx$
- c) Find the equation of the normal to the curve $y = (3x + 1)^3$ at the point where x = 1.

Question 4 (12 marks)

Start this question in a new booklet.

- a) Let α and β be the roots of the equation $3x^2 + 5x 1 = 0$. 3 Find i) $\alpha + \beta$,
 - ii) $\frac{1}{\alpha\beta}$,
 - iii) $\frac{1}{\alpha} + \frac{1}{\beta}$.

b)

Find the area bounded by $y = \sin x$ and $y = -\sin x$, as shown in the diagram above.

Question 4 continued.

Marks

- c) A balloon accelerates vertically, so that the change of height (h) 5 in metres is given by $\frac{dh}{dt} = 10 \frac{1}{3}t$, where t is time in seconds after it takes off. Initially the balloon is 1 metre about the ground.
 - i) Find the height after 6 seconds.
 - ii) What is the maximum height that the balloon can reach?

Question 5 (12 marks) Start this question in a new booklet.

- a) In the Snowy Mountains the number of Corroboree frogs (Q) has been in a slow decline because of bush fires and pollution. The rate of decline is given by $\frac{dQ}{dt} = -kQ$. In 1998 the population was estimated at 2100 and in the most recent survey in 2003 it was estimated at 1050.
 - i) Show that the function $Q = Q_0 e^{-kt}$ satisfies the equation $\frac{dQ}{dt} = -kQ.$
 - ii) Find the value of the constant Q_0 .
 - iii) Show that $k = 0.2 \ln 2$.
 - iv) In how many years will there be only one frog remaining and hence the frogs become extinct in the Snowy Mountains?
- b) The first three terms of an arithmetic series are $25 + 19 + 13 + \dots$ 5
 - i) Find the 20th term.
 - ii) How many terms will it take for the sum of the terms to become negative?

Question 6 (12 marks) Start this question in a new booklet.

Consider the curve given by $y = 1 + 3x - x^3$ for $-2 \le x \le 3$.

- i) Find the coordinates of the stationary points and determine their nature.
- ii) Find the point of inflexion.
- iii) Sketch the curve for $-2 \le x \le 3$.
- iv) What is the minimum value of y for $-2 \le x \le 3$?

Question 7 (12 marks)

Start this question in a new booklet.

Marks

4

8

a)

The area shown is rotated about the y axis. Find the exact value of the volume of the solid that is generated.

b)

In the right angled triangle ABC, D is the mid point of AB

- i) Prove that $\angle ADE$ is a right angle.
- ii) Prove that $\triangle AED = \triangle BED$.
- iii) Prove that BE = EC.

Question 8 (12 marks)

Start this question in a new booklet.

a) i) Factorise $u^2 - 6u - 16$.

3

ii) Hence or otherwise, solve for x: $[\log_2 x]^2 - 6[\log_2 x] - 16 = 0.$

b) Find an approximate value for $\int_{1}^{3} \log_e x dx$ using five function values

and the Trapezoidal Rule. (Answers correct to 2 decimal places.)

c) A parabola has equation: $x^2 = 8(4 - y)$.

3

Find

- i) the focal length,
- ii) the equation of the directrix,
- iii) the coordinates of the focus.

Question 8 Continued

Marks

- d) i) Write down the discriminant of $3x^2 kx + 3$.
- 3

6

ii) For what values of k does the equation $3x^2 - kx + 3 = 0$ have real and unequal roots?

Question 9 (12 marks)

Start this question in a new booklet.

a)

- i) Find the equation of the tangent to $y = e^x$ at the point where x = 2.
- Show that the value of a, the point of intersect of the tangent and the x axis is 1.
- iii) Find the exact size of the shaded area.
- b) Kevin and Sharon borrow \$250 000 to buy an investment property. 6
 They agree to a 15 year loan with monthly repayments and interest of 6% p.a., compounding monthly.
 - i) Show that the amount owed after 3 months is: $A_3 = 250000(1.005)^3 P(1.005^2 + 1.005 + 1)$, where P is the monthly repayment.
 - ii) Calculate the monthly repayment to pay the loan off in the 15 years.
 - iii) After 4 years, they decide to sell the property. How much is still owing on the loan?

Question 10 (12 marks) Start this question in a new booklet. Marks a) Solve the equation $2\cos x = \sqrt{3}$, where $0 \le x \le 2\pi$. b) Consider the function whose derivative is given by $\frac{dy}{dx} = 2x^2(x-1)(2x+1)$. Determine the nature of the stationary point at x = 0.

- You are retrenched from your position as CEO of Pear Computers. You are given a choice of "two payout" options: OPTION 1, a lump sum of \$500,000 today or OPTION 2, \$50,000 now and two equal payments of \$300,000, the first in two year's time and the second in four year's time.
 - i) Assuming that the interest rate for the period is 6% p.a., compounding annually, show that, by the end of the 4th year, OPTION 2 is worth \$68 965.00 (nearest dollar) more than OPTION 1.
 - ii) What is the minimum rate of interest that makes the OPTION 1 the better choice?

End of Paper

HSC MATHEMATICS TRIAL 2003

QUESTION ONE

$$(a) \frac{3\pi}{4} \checkmark$$

(a)
$$\cos \frac{\pi}{6} = -\cos \frac{\pi}{6} = -\frac{\sqrt{3}}{2}$$

$$(f)$$
 $(2-\sqrt{3})^2 = 7-4\sqrt{3}$ $\alpha = 7 \Rightarrow = -4$

MARKING

- one mark for knowing cos = 5
- (e) one mark if calculation correct but incorrectly rounded to 3 significant figures.

QUESTION TWO

(a) (i)
$$M_{AB} = \frac{4-1}{1+5} = \frac{1}{2}$$

$$(iii)$$
 $y-4=\frac{1}{2}(x-i)$

(1)
$$1 + 3 = \sqrt{36 + 9} = \sqrt{45} = 3\sqrt{5}$$

Area of ABCD = $\frac{11}{\sqrt{5}} \times 3\sqrt{5} = 33$ units

(VI)
$$M_{AC} = \begin{pmatrix} -\frac{1}{2}, \frac{1}{2} \end{pmatrix}$$

D has coordinates $\begin{pmatrix} -2, -3 \end{pmatrix}$

(b)
$$\cos \theta = \frac{7^2 + 13^2 - 10^2}{2 \times 7 \times 13}$$

$$\theta = 49^{\circ} 35'$$

Yvestron3

a)
$$i\frac{d}{a\alpha} \tan 3\alpha = 3\sec^2 3\alpha /$$

I mark answer only.

11)
$$\frac{d}{d\alpha} \frac{x}{e^{2x}} = \frac{e^{2x} \cdot 1 - x \cdot 2e^{2x}}{(e^{2x})^{2}}$$

I mark substitution into formula.

$$= \frac{e^{2x} - 2xe}{e^{4x}}$$

I want some type of simplification.

$$= \frac{e^{2x}(1-2x)}{e^{4x}}$$

= 2 marks.

$$= \frac{1-2x}{e^{2x}}$$

iii) $\frac{d}{d\alpha} \log_e (\sin 3\alpha) = \frac{1}{\sin 3\alpha} \times 3\cos 3\alpha$ $= \frac{3\cos 3\alpha}{\sin 3\alpha}$ $= \frac{3\cos 3\alpha}{\sin 3\alpha}$

I mark the fraction

I mark was deducted from a student who added "" to all answers.

mark the correct deferentiate.

(2 marks)

I mark integral c was not needed for the mark

$$\int \frac{x^3 + 2x^2 - 3}{x^2} dx$$

I mark for separating into correct fractions or using factors.

$$= \int \frac{x^{3}}{x^{2}} + \frac{2x^{2}}{x^{2}} - \frac{3}{x^{2}} d\alpha V$$

$$= \int x + 2 - \frac{3}{x^{2}} d\alpha$$

$$= \frac{2}{2} + 2x + \frac{3}{2} + C$$

I mark integrations. all correctly done.

1 mark for + C with 2 correct integrations. = 3 marks

(c)
$$y = (3x+1)^3$$

 $\frac{dy}{dx} = 3(3x+1)^2 \times 3$

$$dy = 9(3x+1)^2 V$$

gradient of tangent at
$$x=1$$

$$m = 9(3x1+1)^{2}$$

$$= 9x16$$

$$= 144$$

gradient of normal at
$$x=1$$

$$m = \frac{1}{1+4}$$

equation of the normal
$$y-y_1=m(px-px_1)$$

$$y = (3 \times 1 + 1)^3$$

 $y = 64$

$$y - b4 = -1 (2x - 1)$$

$$144y - 9216 = -x+1$$

 $x + 144y - 9217 = 0$ is the
required equation.

I mark correct substitution who the formula =(3 marks)

a)
$$3x^2 + 5x - 1 = 0$$

$$(1) \propto + B = -\frac{b}{3}$$

$$= -\frac{5}{3}$$
(1)

$$(1) \otimes B = \frac{c}{a}$$

$$\frac{1}{\sqrt{\beta}} = -3 \qquad (1)$$

$$= \frac{1}{5}$$

$$= 4 \left[-\cos x \right]^{T} (1)$$

$$= 4 \left[-\cos \pi + \cos \phi \right]$$

$$= 4 + 1 + 1$$
 (1)

c)
$$\frac{dh}{dt} = 10 - 1 + \frac{1}{3} + \frac{1}{2} + \frac{1}{6} +$$

$$= \subset$$

$\frac{\text{Question } t}{\text{in } = 10t - t^2 + 1}$	
$h = 7 + 6$ $h = 10 \times 6 - 6^2 + 1$,
$= 60 - 6 + 1$ $\therefore h = 55 m \qquad (1)$	
11) $h = 10t - t^2 + c$	
$\frac{dh}{dt} = 10 - \frac{1}{3}t$ $10 - \frac{1}{3}t = 0 \qquad (1)$	I mark showing th =0
30-t=0 $t=30$	
$\frac{d^2h}{dA^2} = \frac{1}{3}$	I mark shaving it is a max
$\frac{1}{1}$, $\frac{1}{1}$ 1	-
$h = 10 \times 30 - \frac{30^2 + 1}{6}$	
= 300 - 150+1 = 151 m (i) .: max heightis 151 m.	I mark for answer.

Question 5

a) i)
$$Q = Qe^{-kt}$$

$$\frac{d\theta}{dt} = \frac{d}{dt} (Qe^{-kt})$$

$$= Qox - ke^{-kt}$$

$$= -kQe^{-kt}$$

$$= -kQ$$

ii)
$$t=0$$
 $Q=2100$
 $2100 = Qe^{-k \times 0}$ /
 $Q_0 = 2100$ (2)

$$-6k = \ln \frac{1}{2}
6k = \ln 2
k = \frac{1}{3} \ln 2
= 0.2 \ln 2$$

$$\ln \frac{1}{2} = -\ln 2
0 2$$

must show

$$|V| = 2100e^{-0.2\ln 2t}$$

$$e^{-0.2\ln 2t} = \frac{1}{2100}$$

$$-0.2\ln 2t = -\ln 2100$$

$$t = \frac{\ln 2100}{0.2\ln 2}$$

$$\approx 55 \text{ years}$$

b) i)
$$a=25$$
, $d=6$
 $T_{20} = 25 + 19x - 6$ 2
$$= -89$$

ii)
$$S_{n} \geq 0 \frac{n}{2} (S_{0} + (n-1)x^{-6}) \geq 0$$

$$n(S_{0} - 6_{n}) \geq 0$$

$$n \geq 0 \text{ or } n > 9\frac{1}{3}$$

$$n = 10 \quad (n \neq 0)$$

06

i)
$$y' = 3 - 3x^2 /$$

Stationary points y=0 $0=3(1-x^2)$

$$\chi = 1$$
 $y = 1 + 3 - 1 = 3$

$$x=-1$$
 $y=1-3+1=-1$

$$(1,3) (-1,-1)$$

$$y'' = -6x$$

$$\chi = -1$$
 $y'' = 6 = 0$

$$ii)$$
 $o = -6x$

$$n = 0 \ y = 1$$
(0,1)

$$\frac{x}{y''} \frac{-\frac{1}{2} 0^{\frac{1}{2}}}{3 0^{-3}}$$

Change in concavity.

(-2, 3)
$$\chi = -2$$
 $y = 1 - 6 + 8 = 3$

$$x=3$$
 $y=1+9-27$
= -17

7/(a) $y = \sqrt{2x-1}$ $y^2 + 1 = 2x$ $x^2 = (y^2 + 1)^2$

$$V = \pi \int_{0}^{1} x^{2} dy$$

$$= \pi \int_{0}^{1} (y^{2} + 2y^{2} + 1) dy$$

$$= \pi \int_{0}^{1} (y^{2} + 2y^{2} + 1) dy$$

$$= \pi \int_{0}^{1} (y^{2} + 2y^{2} + 1) dy$$

$$= \pi \int_{0}^{1} (y^{2} + 2y^{2} + 1) dy$$

$$= \pi \int_{0}^{1} (y^{2} + 2y^{2} + 1) dy$$

$$= \pi \int_{0}^{1} (y^{2} + 2y^{2} + 1) dy$$

$$= \pi \int_{0}^{1} (y^{2} + 2y^{2} + 1) dy$$

$$= \pi \int_{0}^{1} (y^{2} + 2y^{2} + 1) dy$$

$$= \pi \int_{0}^{1} (y^{2} + 2y^{2} + 1) dy$$

$$= \pi \int_{0}^{1} (y^{2} + 2y^{2} + 1) dy$$

$$= \pi \int_{0}^{1} (y^{2} + 2y^{2} + 1) dy$$

$$= \pi \int_{0}^{1} (y^{2} + 2y^{2} + 1) dy$$

$$= \pi \int_{0}^{1} (y^{2} + 2y^{2} + 1) dy$$

$$= \pi \int_{0}^{1} (y^{2} + 2y^{2} + 1) dy$$

$$= \pi \int_{0}^{1} (y^{2} + 2y^{2} + 1) dy$$

$$= \pi \int_{0}^{1} (y^{2} + 2y^{2} + 1) dy$$

$$= \pi \int_{0}^{1} (y^{2} + 2y^{2} + 1) dy$$

$$= \pi \int_{0}^{1} (y^{2} + 2y^{2} + 1) dy$$

$$= \pi \int_{0}^{1} (y^{2} + 2y^{2} + 1) dy$$

$$= \pi \int_{0}^{1} (y^{2} + 2y^{2} + 1) dy$$

$$= \pi \int_{0}^{1} (y^{2} + 2y^{2} + 1) dy$$

$$= \pi \int_{0}^{1} (y^{2} + 2y^{2} + 1) dy$$

$$= \pi \int_{0}^{1} (y^{2} + 2y^{2} + 1) dy$$

$$= \pi \int_{0}^{1} (y^{2} + 2y^{2} + 1) dy$$

$$= \pi \int_{0}^{1} (y^{2} + 2y^{2} + 1) dy$$

$$= \pi \int_{0}^{1} (y^{2} + 2y^{2} + 1) dy$$

$$= \pi \int_{0}^{1} (y^{2} + 2y^{2} + 1) dy$$

$$= \pi \int_{0}^{1} (y^{2} + 2y^{2} + 1) dy$$

$$= \pi \int_{0}^{1} (y^{2} + 2y^{2} + 1) dy$$

$$= \pi \int_{0}^{1} (y^{2} + 2y^{2} + 1) dy$$

$$= \pi \int_{0}^{1} (y^{2} + 2y^{2} + 1) dy$$

$$= \pi \int_{0}^{1} (y^{2} + 2y^{2} + 1) dy$$

$$= \pi \int_{0}^{1} (y^{2} + 2y^{2} + 1) dy$$

$$= \pi \int_{0}^{1} (y^{2} + 2y^{2} + 1) dy$$

$$= \pi \int_{0}^{1} (y^{2} + 2y^{2} + 1) dy$$

$$= \pi \int_{0}^{1} (y^{2} + 2y^{2} + 1) dy$$

$$= \pi \int_{0}^{1} (y^{2} + 2y^{2} + 1) dy$$

$$= \pi \int_{0}^{1} (y^{2} + 2y^{2} + 1) dy$$

$$= \pi \int_{0}^{1} (y^{2} + 2y^{2} + 1) dy$$

$$= \pi \int_{0}^{1} (y^{2} + 2y^{2} + 1) dy$$

$$= \pi \int_{0}^{1} (y^{2} + 2y^{2} + 1) dy$$

$$= \pi \int_{0}^{1} (y^{2} + 2y^{2} + 1) dy$$

$$= \pi \int_{0}^{1} (y^{2} + 2y^{2} + 1) dy$$

$$= \pi \int_{0}^{1} (y^{2} + 2y^{2} + 1) dy$$

$$= \pi \int_{0}^{1} (y^{2} + 2y^{2} + 1) dy$$

$$= \pi \int_{0}^{1} (y^{2} + 2y^{2} + 1) dy$$

$$= \pi \int_{0}^{1} (y^{2} + 2y^{2} + 1) dy$$

$$= \pi \int_{0}^{1} (y^{2} + 2y^{2} + 1) dy$$

$$= \pi \int_{0}^{1} (y^{2} + 2y^{2} + 1) dy$$

$$= \pi \int_{0}^{1} (y^{2} + 2y^{2} + 1) dy$$

$$= \pi \int_{0}^{1} (y^$$

(b) (i) ADE = ABC (corresponding Ls, DE/|BC)
= 90°

AD=BO (given)

But AED = BED (equal corresponding Ls in congruent As AED)

: AEBC is isosceles (equal base Ls)

$$8/(u)(1)$$
 $(u-8)(u+2)$ (ii) later together

$$10y_2x = 8$$
 or $10y_2x = -2$
 $x = 2^8$ $x = 2^{-2}$
 $= 256$ $= \frac{1}{4}$

$$\int_{1}^{3} \log x \, dx = \frac{1}{4} \left[f(1) + f(3) + 2 \left[f(1.5) + f(2) + f(2.5) \right] \right]$$

$$= \frac{1}{4} \left(0 + \log 3 + 2 \left(\log 1.5 + \log 2 + \log 2.5 \right) \right)$$

$$= \frac{1}{4} \log 168.75$$

$$= 1.28 \left(2! \ decimal \ places \right)$$

(c) (i)
$$\frac{2}{(0,2)}$$
(ii) $\frac{2}{(0,2)}$
(iii) $\frac{3}{(0,2)}$

$$(1)(1) k^2 - 4.3.3$$

TRIAL HSC MATH 2003

QUESTION 9

a)
$$y = \frac{dy}{dx} = e^{x}$$

 $- M = e^{2} = a^{2}(x-2)$
 $y - e^{2} = e^{2}(x-2)$

$$y - e^2 = e^2 x - 2e^2$$

 $e^2 x - y - e^2 = 0$

ii) when
$$y=0$$

$$e^{2}x=e^{2}=0$$

Tily Shaded Area =
$$\int_{0}^{e^{2}} dx - \frac{1}{2} \times 1 \times e^{2}$$

 $(oe \int_{0}^{e^{2}} e^{x} dx - \int_{0}^{e^{2}} e^{x} - (e^{2}x - e^{2}) dx)$
 $= \left[e^{x}\right]_{0}^{2} - \frac{1}{2}e^{2}$

$$= e^{2} - 1 - \frac{1}{2}e^{2}$$

$$= \frac{1}{2}e^{2} - 1 \text{ units}^{2}$$

b) if
$$A_n =$$
 amount owed after n months $r = \frac{0.06}{12}$
= 0.005

$$A_1 = 250000 \times 1.005 - P$$

$$A_2 = (250000 \times 1.005 - P) \times 1.005 - P$$

$$= 250000 \times 1.005^{2} - P(1+1.005)$$

$$A_{80} = 250 \cos(1.005)^{180} - P(1+1.005 + ... + 1.005^{190})$$

$$250 \cos(1.005)^{180} = P(\frac{1(1-005)^{180} - 1}{1-005 - 1})$$

$$P = 250000(1-005)^{180} \times \frac{0.005}{1.005^{180}-1}$$

$$= 82109.64$$

$$A_{48} = 50000 (1005)^{48} - 2109.64 \left(\frac{1.005^{48}-1}{0.005}\right)$$
= \$203475.23

1 - find gradrent

1 - equation of line

1 - attempt to solve for a when y = 0.

2 - correct onea expression (2 parts)

NOTE: Including for

1 - answer in exact form

1- adjust rate

1- derive expression showing expansion.

1 - A180 = 0

1 - 6P sum

1 - correct solution.

1- correct subst.

QUESTION 10

a)
$$2\cos x = \frac{13}{2}$$

 $\cos x = \frac{13}{2}$
related $x = \frac{\pi}{6}$, $11\pi/6$.

b)
$$\frac{dy}{dx} = 2x^2(x-1)(2x+1) \left(=2x^2(2x^2-x-1)\right)$$

 $\frac{d^2y}{dx^2} = 4x(2x^2-x-1) + 2x^2(4x-1)$
when $x=0$, $\frac{d^2y}{dx^2} = 0$
 $\frac{d^2y}{dx^2} = 0$

Stat pts
$$\Rightarrow$$
 0, 1, $-\frac{1}{2}$
Checke $\frac{x}{dy} - \frac{1}{0} - \frac{1}{2}$

-- horizontal inflexion at x=0.

c)
$$y \circ p + c = 1 \Rightarrow A_4 = 100 \circ c \times 106^4$$

= \$631238 48

Option 2

$$A_{4} = 50000 \times 106^{4} + 300000 \times 106^{2} + 300000$$

$$= $4700.203.85$$

$$0pt2 - 0pt1 = $68.965$$

het
$$u = 1^2$$

$$u = \frac{30 \pm \sqrt{900 + 9400}}{2 \times 45}$$

$$= \frac{30 \pm 30.57}{90}$$

$$= 1 \pm \sqrt{7}$$

 $= \frac{1 \pm \sqrt{3}}{3}$ $= 2 \cdot 1 - 2 \cdot 152 \quad \text{or} \quad -0.5.485 \quad \text{(reject negative)}$

r = 1.1023= 1.1023 = maimunt rate is 10.2% 1- related angle

1 - correct quadrants & expressed in radions.

1- de = 0 or chock any

1 - check pts between Stationary points

1 - correct conclusion from info garned.

1- calculate opt 1

1-expression for Opt 2 1-calculate Opt 2

1 - subtraction.

1 - neguality statement

1 - salve quadratic

1- correct assure